| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529 |
- ########################################################################################
- #
- # 95_Astro.pm
- #
- # Collection of various routines for astronomical data
- # Prof. Dr. Peter A. Henning
- #
- # Equations from "Practical Astronomy with your Calculator" by Peter Duffett-Smith
- # Program skeleton (with some errors) by Arnold Barmettler
- # http://lexikon.astronomie.info/java/sunmoon/
- #
- # $Id: 95_Astro.pm 15508 2017-11-27 15:24:42Z phenning $
- #
- ########################################################################################
- #
- # This programm is free software; you can redistribute it and/or modify
- # it under the terms of the GNU General Public License as published by
- # the Free Software Foundation; either version 2 of the License, or
- # (at your option) any later version.
- #
- # The GNU General Public License can be found at
- # http://www.gnu.org/copyleft/gpl.html.
- # A copy is found in the textfile GPL.txt and important notices to the license
- # from the author is found in LICENSE.txt distributed with these scripts.
- #
- # This script is distributed in the hope that it will be useful,
- # but WITHOUT ANY WARRANTY; without even the implied warranty of
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- # GNU General Public License for more details.
- #
- ########################################################################################
- package main;
- use strict;
- use warnings;
- use POSIX;
- use Math::Trig;
- use Time::Local;
- #use Data::Dumper;
- my $DEG = pi/180.0;
- my $RAD = 180./pi;
- my $deltaT = 65; # Correction time in s
- my %Astro;
- my %Date;
- my $astroversion = 1.42;
- #-- These we may get on request
- my %gets = (
- "version" => "V",
- "json" => "J",
- "text" => "T"
- );
- my $astro_tt;
- my %astro_transtable_EN = (
- "overview" => "Summary",
- "name" => "Name",
- "time" => "Time",
- "action" => "Action",
- "type" => "Type",
- "description" => "Description",
- "profile" => "Profile",
- #--
- "coord" => "Coordinates",
- "position" => "Position",
- "longitude" => "Longitude",
- "latitude" => "Latitude",
- "altitude" => "Height above sea",
- "lonecl" => "Ecliptical longitude",
- "latecl" => "Ecliptical latitude",
- "ra" => "Right ascension",
- "dec" => "Declination",
- "az" => "Azimuth",
- "alt" => "Horizontal altitude",
- "age" => "Age",
- "rise" => "Rise",
- "set" => "Set",
- "transit" => "Transit",
- "distance" => "Distance",
- "diameter" => "Diameter",
- "toobs" => "to observer",
- "toce" => "to Earth center",
- "twilightcivil" => "Civil twilight",
- "twilightnautic" => "Nautical twilight",
- "twilightastro" => "Astronomical twilight",
- "twilightcustom" => "Custom twilight",
- "sign" => "Zodiac sign",
- #--
- "today" => "Today",
- "tomorrow" => "Tomorrow",
- "weekday" => "Day of Week",
- "date" => "Date",
- "jdate" => "Julian date",
- "dayofyear" => "day of year",
- "days" => "days",
- "timezone" => "Time Zone",
- "lmst" => "Local Sidereal Time",
- #--
- "monday" => ["Monday","Mon"],
- "tuesday" => ["Tuesday","Tue"],
- "wednesday" => ["Wednesday","Wed"],
- "thursday" => ["Thursday","Thu"],
- "friday" => ["Friday","Fri"],
- "saturday" => ["Saturday","Sat"],
- "sunday" => ["Sunday","Sun"],
- #--
- "season" => "Season",
- "spring" => "Spring",
- "summer" => "Summer",
- "fall" => "Fall",
- "winter" => "Winter",
- #--
- "aries" => "Ram",
- "taurus" => "Bull",
- "gemini" => "Twins",
- "cancer" => "Crab",
- "leo" => "Lion",
- "virgo" => "Maiden",
- "libra" => "Scales",
- "scorpio" => "Scorpion",
- "sagittarius" => "Archer",
- "capricorn" => "Goat",
- "aquarius" => "Water Bearer",
- "pisces" => "Fish",
- #--
- "sun" => "Sun",
- #--
- "moon" => "Moon",
- "phase" => "Phase",
- "newmoon" => "New Moon",
- "waxingcrescent" => "Waxing Crescent",
- "firstquarter" => "First Quarter",
- "waxingmoon" => "Waxing Moon",
- "fullmoon" => "Full Moon",
- "waningmoon" => "Waning Moon",
- "lastquarter" => "Last Quarter",
- "waningcrescent" => "Waning Crescent"
- );
-
- my %astro_transtable_DE = (
- "overview" => "Zusammenfassung",
- "name" => "Name",
- "time" => "Zeit",
- "action" => "Aktion",
- "type" => "Typ",
- "description" => "Beschreibung",
- "profile" => "Profil",
- #--
- "coord" => "Koordinaten",
- "position" => "Position",
- "longitude" => "Länge",
- "latitude" => "Breite",
- "altitude" => "Höhe ü.M.",
- "lonecl" => "Eklipt. Länge",
- "latecl" => "Eklipt. Breite",
- "ra" => "Rektaszension",
- "dec" => "Deklination",
- "az" => "Azimut",
- "alt" => "Horizontwinkel",
- "age" => "Alter",
- "phase" => "Phase",
- "rise" => "Aufgang",
- "set" => "Untergang",
- "transit" => "Kulmination",
- "distance" => "Entfernung",
- "diameter" => "Durchmesser",
- "toobs" => "z. Beobachter",
- "toce" => "z. Erdmittelpunkt",
- "twilightcivil" => "Bürgerliche Dämmerung",
- "twilightnautic" => "Nautische Dämmerung",
- "twilightastro" => "Astronomische Dämmerung",
- "twilightcustom" => "Konfigurierte Dämmerung",
- "sign" => "Tierkreiszeichen",
- #--
- "today" => "Heute",
- "tomorrow" => "Morgen",
- "weekday" => "Wochentag",
- "date" => "Datum",
- "jdate" => "Julianisches Datum",
- "dayofyear" => "Tag d. Jahres",
- "days" => "Tage",
- "timezone" => "Zeitzone",
- "lmst" => "Lokale Sternzeit",
- #--
- "monday" => ["Montag","Mo"],
- "tuesday" => ["Dienstag","Di"],
- "wednesday" => ["Mittwoch","Mi"],
- "thursday" => ["Donnerstag","Do"],
- "friday" => ["Freitag","Fr"],
- "saturday" => ["Samstag","Sa"],
- "sunday" => ["Sonntag","So"],
- #--
- "season" => "Jahreszeit",
- "spring" => "Frühling",
- "summer" => "Sommer",
- "fall" => "Herbst",
- "winter" => "Winter",
- #--
- "aries" => "Widder",
- "taurus" => "Stier",
- "gemini" => "Zwillinge",
- "cancer" => "Krebs",
- "leo" => "Löwe",
- "virgo" => "Jungfrau",
- "libra" => "Waage",
- "scorpio" => "Skorpion",
- "sagittarius" => "Schütze",
- "capricorn" => "Steinbock",
- "aquarius" => "Wassermann",
- "pisces" => "Fische",
- #--
- "sun" => "Sonne",
- #--
- "moon" => "Mond",
- "phase" => "Phase",
- "newmoon" => "Neumond",
- "waxingcrescent" => "Zunehmende Sichel",
- "firstquarter" => "Erstes Viertel",
- "waxingmoon" => "Zunehmender Mond",
- "fullmoon" => "Vollmond",
- "waningmoon" => "Abnehmender Mond",
- "lastquarter" => "Letztes Viertel",
- "waningcrescent" => "Abnehmende Sichel"
- );
-
- my @zodiac=("aries","taurus","gemini","cancer","leo","virgo",
- "libra","scorpio","sagittarius","capricorn","aquarius","pisces");
- my @phases = ("newmoon","waxingcrescent", "firstquarter", "waxingmoon",
- "fullmoon", "waningmoon", "lastquarter", "waningcrescent");
- my @seasons = (
- "winter","spring","summer","fall");
-
- my %seasonn = (
- "spring" => [80,172], #21./22.3. - 20.6.
- "summer" => [173,265], #21.06. bis 21./22.09.
- "fall" => [266,353], #22./23.09. bis 20./21.12.
- "winter" => [354,79]
- );
-
- sub Astro_SunRise($$$$$$);
- sub Astro_MoonRise($$$$$$$);
-
- ########################################################################################################
- #
- # Astro_Initialize
- #
- # Parameter hash = hash of device addressed
- #
- ########################################################################################################
- sub Astro_Initialize ($) {
- my ($hash) = @_;
-
- $hash->{DefFn} = "Astro_Define";
- #$hash->{SetFn} = "Astro_Set";
- $hash->{GetFn} = "Astro_Get";
- $hash->{UndefFn} = "Astro_Undef";
- $hash->{AttrFn} = "Astro_Attr";
- $hash->{AttrList} = "interval longitude latitude altitude horizon ".$readingFnAttributes;;
-
- $data{FWEXT}{"/Astro_moonwidget"}{FUNC} = "Astro_moonwidget";
- $data{FWEXT}{"/Astr_moonwidget"}{FORKABLE} = 0;
-
- return undef;
- }
- ########################################################################################################
- #
- # Astro_Define - Implements DefFn function
- #
- # Parameter hash = hash of device addressed, def = definition string
- #
- ########################################################################################################
- sub Astro_Define ($$) {
- my ($hash, $def) = @_;
- #my $now = time();
- my $name = $hash->{NAME};
- $hash->{VERSION} = $astroversion;
- readingsSingleUpdate( $hash, "state", "Initialized", 1 );
-
- $modules{Astro}{defptr}{$name} = $hash;
-
- RemoveInternalTimer($hash);
-
- #-- Call us in n seconds again.
- InternalTimer(gettimeofday()+ 60, "Astro_Update", $hash,0);
- return undef;
- }
- ########################################################################################################
- #
- # Astro_Undef - Implements Undef function
- #
- # Parameter hash = hash of device addressed, def = definition string
- #
- ########################################################################################################
- sub Astro_Undef ($$) {
- my ($hash,$arg) = @_;
-
- RemoveInternalTimer($hash);
-
- return undef;
- }
- ########################################################################################################
- #
- # Astro_Attr - Implements Attr function
- #
- # Parameter hash = hash of device addressed, ???
- #
- ########################################################################################################
- sub Astro_Attr(@) {
- my ($do,$name,$key,$value) = @_;
-
- my $hash = $defs{$name};
- my $ret;
-
- if ( $do eq "set") {
- ARGUMENT_HANDLER: {
- #-- interval modified at runtime
- $key eq "interval" and do {
- #-- check value
- return "[Astro] set $name interval must be >= 0" if(int($value) < 0);
- #-- update timer
- $hash->{INTERVAL} = int($value);
- if ($init_done) {
- RemoveInternalTimer($hash);
- InternalTimer(gettimeofday()+$hash->{INTERVAL}, "Astro_Update", $hash, 0);
- }
- last;
- };
- }
- }
- return $ret;
- }
- sub Astro_mod($$) { my ($a,$b)=@_;if( $a =~ /\d*\.\d*/){return($a-floor($a/$b)*$b)}else{return undef}; }
- sub Astro_mod2Pi($) { my ($x)=@_;$x = Astro_mod($x, 2.*pi);return($x); }
- sub Astro_round($$) { my ($x,$n)=@_; return int(10**$n*$x+0.5)/10**$n};
- sub Astro_tzoffset($) {
- my ($t) = @_;
- my $utc = mktime(gmtime($t));
- my $local = mktime(localtime($t));
- return (($local - $utc)/36);
- }
- ########################################################################################################
- #
- # time fragments into minutes, seconds
- #
- ########################################################################################################
-
- sub Astro_HHMM($){
- my ($hh) = @_;
- return("")
- if (!defined($hh) || $hh !~ /\d*\.\d*/) ;
-
- my $h = floor($hh);
- my $m = ($hh-$h)*60.;
- return sprintf("%02d:%02d",$h,$m);
- }
- sub Astro_HHMMSS($){
- my ($hh) = @_;
- return("")
- if ($hh==0) ;
-
- my $m = ($hh-floor($hh))*60.;
- my $s = ($m-floor($m))*60;
- my $h = floor($hh);
- return sprintf("%02d:%02d:%02d",$h,$m,$s);
- }
- ########################################################################################################
- #
- # Astro_CalcJD - Calculate Julian date: valid only from 1.3.1901 to 28.2.2100
- #
- ########################################################################################################
- sub Astro_CalcJD($$$) {
- my ($day,$month,$year) = @_;
- my $jd = 2415020.5-64; # 1.1.1900 - correction of algorithm
- if ($month<=2) {
- $year--;
- $month += 12;
- }
- $jd += int( ($year-1900)*365.25 );
- $jd += int( 30.6001*(1+$month) );
- return($jd + $day);
- }
- ########################################################################################################
- #
- # Astro_GMST - Julian Date to Greenwich Mean Sidereal Time
- #
- ########################################################################################################
- sub Astro_GMST($){
- my ($JD) = @_;
- my $UT = ($JD-0.5) - int($JD-0.5);
- $UT = $UT*24.; # UT in hours
- $JD = floor($JD-0.5)+0.5; # JD at 0 hours UT
- my $T = ($JD-2451545.0)/36525.0;
- my $T0 = 6.697374558 + $T*(2400.051336 + $T*0.000025862);
-
- return( Astro_mod($T0+$UT*1.002737909,24.));
- }
- ########################################################################################################
- #
- # Astro_GMST2UT - Convert Greenweek mean sidereal time to UT
- #
- ########################################################################################################
- sub Astro_GMST2UT($$){
- my ($JD, $gmst) = @_;
- $JD = floor($JD-0.5)+0.5; # JD at 0 hours UT
- my $T = ($JD-2451545.0)/36525.0;
- my $T0 = Astro_mod(6.697374558 + $T*(2400.051336 + $T*0.000025862), 24.);
- my $UT = 0.9972695663*(($gmst-$T0));
- return($UT);
- }
- ########################################################################################################
- #
- # Astro_GMST2LMST - Local Mean Sidereal Time, geographical longitude in radians,
- # East is positive
- #
- ########################################################################################################
- sub Astro_GMST2LMST($$){
- my ($gmst, $lon) = @_;
- my $lmst = Astro_mod($gmst+$RAD*$lon/15, 24.);
- return( $lmst );
- }
- ########################################################################################################
- #
- # Astro_Ecl2Equ - Transform ecliptical coordinates (lon/lat) to equatorial coordinates (RA/dec)
- #
- ########################################################################################################
- sub Astro_Ecl2Equ($$$){
- my ($lon, $lat, $TDT) = @_;
- my $T = ($TDT-2451545.0)/36525.; # Epoch 2000 January 1.5
- my $eps = (23.+(26+21.45/60.)/60. + $T*(-46.815 +$T*(-0.0006 + $T*0.00181) )/3600. )*$DEG;
- my $coseps = cos($eps);
- my $sineps = sin($eps);
- my $sinlon = sin($lon);
- my $ra = Astro_mod2Pi(atan2( ($sinlon*$coseps-tan($lat)*$sineps), cos($lon) ));
- my $dec = asin( sin($lat)*$coseps + cos($lat)*$sineps*$sinlon );
-
- return ($ra,$dec);
- }
- ########################################################################################################
- #
- # Astro_Equ2Altaz - Transform equatorial coordinates (RA/Dec) to horizonal coordinates
- # (azimuth/altitude). Refraction is ignored
- #
- ########################################################################################################
- sub Astro_Equ2Altaz($$$$$){
- my ($ra, $dec, $TDT, $lat, $lmst)=@_;
- my $cosdec = cos($dec);
- my $sindec = sin($dec);
- my $lha = $lmst - $ra;
- my $coslha = cos($lha);
- my $sinlha = sin($lha);
- my $coslat = cos($lat);
- my $sinlat = sin($lat);
-
- my $N = -$cosdec * $sinlha;
- my $D = $sindec * $coslat - $cosdec * $coslha * $sinlat;
- my $az = Astro_mod2Pi( atan2($N, $D) );
- my $alt = asin( $sindec * $sinlat + $cosdec * $coslha * $coslat );
- return ($az,$alt);
- }
- ########################################################################################################
- #
- # Astro_GeoEqu2TopoEqu - Transform geocentric equatorial coordinates (RA/Dec) to
- # topocentric equatorial coordinates
- #
- ########################################################################################################
- sub Astro_GeoEqu2TopoEqu($$$$$$$){
- my ($ra, $dec, $distance, $lon, $lat, $radius, $lmst) = @_;
- my $cosdec = cos($dec);
- my $sindec = sin($dec);
- my $coslst = cos($lmst);
- my $sinlst = sin($lmst);
- my $coslat = cos($lat); # we should use geocentric latitude, not geodetic latitude
- my $sinlat = sin($lat);
- my $rho = $radius; # observer-geocenter in km
-
- my $x = $distance*$cosdec*cos($ra) - $rho*$coslat*$coslst;
- my $y = $distance*$cosdec*sin($ra) - $rho*$coslat*$sinlst;
- my $z = $distance*$sindec - $rho*$sinlat;
- my $distanceTopocentric = sqrt($x*$x + $y*$y + $z*$z);
- my $decTopocentric = asin($z/$distanceTopocentric);
- my $raTopocentric = Astro_mod2Pi( atan2($y, $x) );
- return ( ($distanceTopocentric,$decTopocentric,$raTopocentric) );
- }
- ########################################################################################################
- #
- # Astro_EquPolar2Cart - Calculate cartesian from polar coordinates
- #
- ########################################################################################################
- sub Astro_EquPolar2Cart($$$){
- my ($lon,$lat,$distance) = @_;
- my $rcd = cos($lat)*$distance;
- my $x = $rcd*cos($lon);
- my $y = $rcd*sin($lon);
- my $z = sin($lat)*$distance;
- return( ($x,$y,$z) );
- }
- ########################################################################################################
- #
- # Astro_Observer2EquCart - Calculate observers cartesian equatorial coordinates (x,y,z in celestial frame)
- # from geodetic coordinates (longitude, latitude, height above WGS84 ellipsoid)
- # Currently only used to calculate distance of a body from the observer
- #
- ########################################################################################################
- sub Astro_Observer2EquCart($$$$){
- my ($lon, $lat, $height, $gmst ) = @_;
- my $flat = 298.257223563; # WGS84 flatening of earth
- my $aearth = 6378.137; # GRS80/WGS84 semi major axis of earth ellipsoid
- #-- Calculate geocentric latitude from geodetic latitude
- my $co = cos ($lat);
- my $si = sin ($lat);
- $si = $si * $si;
- my $fl = 1.0 - 1.0 / $flat;
- $fl = $fl * $fl;
- my $u = 1.0 / sqrt ($co * $co + $fl * $si);
- my $a = $aearth * $u + $height;
- my $b = $aearth * $fl * $u + $height;
- my $radius = sqrt ($a * $a * $co *$co + $b *$b * $si); # geocentric distance from earth center
- my $y = acos ($a * $co / $radius); # geocentric latitude, rad
- my $x = $lon; # longitude stays the same
- my $z;
- if ($lat < 0.0) { $y = -$y; } # adjust sign
-
- #-- convert from geocentric polar to geocentric cartesian, with regard to Greenwich
- ($x,$y,$z) = Astro_EquPolar2Cart( $x, $y, $radius );
-
- #-- rotate around earth's polar axis to align coordinate system from Greenwich to vernal equinox
- my $rotangle = $gmst/24*2*pi; # sideral time gmst given in hours. Convert to radians
- my $x2 = $x*cos($rotangle) - $y*sin($rotangle);
- my $y2 = $x*sin($rotangle) + $y*cos($rotangle);
-
- return( ($x2,$y2,$z,$radius) );
- }
- ########################################################################################################
- #
- # Astro_SunPosition - Calculate coordinates for Sun
- # Coordinates are accurate to about 10s (right ascension)
- # and a few minutes of arc (declination)
- #
- ########################################################################################################
- sub Astro_SunPosition($$$){
- my ($TDT, $observerlat, $lmst)=@_;
-
- my $D = $TDT-2447891.5;
- my $eg = 279.403303*$DEG;
- my $wg = 282.768422*$DEG;
- my $e = 0.016713;
- my $a = 149598500; # km
- #-- mean angular diameter of sun
- my $diameter0 = 0.533128*$DEG;
-
- my $MSun = 360*$DEG/365.242191*$D+$eg-$wg;
- my $nu = $MSun + 360.*$DEG/pi*$e*sin($MSun);
-
- my %sunCoor;
-
- $sunCoor{lon} = Astro_mod2Pi($nu+$wg);
- $sunCoor{lat} = 0;
- $sunCoor{anomalyMean} = $MSun;
-
- my $distance = (1-$e*$e)/(1+$e*cos($nu)); # distance in astronomical units
- $sunCoor{diameter} = $diameter0/$distance; # angular diameter
- $sunCoor{distance} = $distance*$a; # distance in km
- $sunCoor{parallax} = 6378.137/$sunCoor{distance}; # horizonal parallax
- ($sunCoor{ra},$sunCoor{dec}) = Astro_Ecl2Equ($sunCoor{lon}, $sunCoor{lat}, $TDT);
-
- #-- calculate horizonal coordinates of sun, if geographic positions is given
- if (defined($observerlat) && defined($lmst) ) {
- ($sunCoor{az},$sunCoor{alt}) = Astro_Equ2Altaz($sunCoor{ra}, $sunCoor{dec}, $TDT, $observerlat, $lmst);
- }
- $sunCoor{sig} = $zodiac[floor($sunCoor{lon}*$RAD/30)];
-
- return ( \%sunCoor );
- }
- ########################################################################################################
- #
- # Astro_MoonPosition - Calculate data and coordinates for the Moon
- # Coordinates are accurate to about 1/5 degree (in ecliptic coordinates)
- #
- ########################################################################################################
- sub Astro_MoonPosition($$$$$$$){
- my ($sunlon, $sunanomalyMean, $TDT, $observerlon, $observerlat, $observerradius, $lmst) = @_;
-
- my $D = $TDT-2447891.5;
-
- #-- Mean Moon orbit elements as of 1990.0
- my $l0 = 318.351648*$DEG;
- my $P0 = 36.340410*$DEG;
- my $N0 = 318.510107*$DEG;
- my $i = 5.145396*$DEG;
- my $e = 0.054900;
- my $a = 384401; # km
- my $diameter0 = 0.5181*$DEG; # angular diameter of Moon at a distance
- my $parallax0 = 0.9507*$DEG; # parallax at distance a
-
- my $l = 13.1763966*$DEG*$D+$l0;
- my $MMoon = $l-0.1114041*$DEG*$D-$P0; # Moon's mean anomaly M
- my $N = $N0-0.0529539*$DEG*$D; # Moon's mean ascending node longitude
- my $C = $l-$sunlon;
- my $Ev = 1.2739*$DEG*sin(2*$C-$MMoon);
- my $Ae = 0.1858*$DEG*sin($sunanomalyMean);
- my $A3 = 0.37*$DEG*sin($sunanomalyMean);
- my $MMoon2 = $MMoon+$Ev-$Ae-$A3; # corrected Moon anomaly
- my $Ec = 6.2886*$DEG*sin($MMoon2); # equation of centre
- my $A4 = 0.214*$DEG*sin(2*$MMoon2);
- my $l2 = $l+$Ev+$Ec-$Ae+$A4; # corrected Moon's longitude
- my $V = 0.6583*$DEG*sin(2*($l2-$sunlon));
- my $l3 = $l2+$V; # true orbital longitude;
- my $N2 = $N-0.16*$DEG*sin($sunanomalyMean);
-
- my %moonCoor;
- $moonCoor{lon} = Astro_mod2Pi( $N2 + atan2( sin($l3-$N2)*cos($i), cos($l3-$N2) ) );
- $moonCoor{lat} = asin( sin($l3-$N2)*sin($i) );
- $moonCoor{orbitLon} = $l3;
-
- ($moonCoor{ra},$moonCoor{dec}) = Astro_Ecl2Equ($moonCoor{lon},$moonCoor{lat},$TDT);
- #-- relative distance to semi mayor axis of lunar oribt
- my $distance = (1-$e*$e) / (1+$e*cos($MMoon2+$Ec) );
- $moonCoor{diameter} = $diameter0/$distance; # angular diameter in radians
- $moonCoor{parallax} = $parallax0/$distance; # horizontal parallax in radians
- $moonCoor{distance} = $distance*$a; # distance in km
- #-- Calculate horizonal coordinates of moon, if geographic positions is given
- #-- backup geocentric coordinates
- $moonCoor{raGeocentric} = $moonCoor{ra};
- $moonCoor{decGeocentric} = $moonCoor{dec};
- $moonCoor{distanceGeocentric} = $moonCoor{distance};
- if (defined($observerlat) && defined($observerlon) && defined($lmst) ) {
- #-- transform geocentric coordinates into topocentric (==observer based) coordinates
- my ($distanceTopocentric,$decTopocentric,$raTopocentric) =
- Astro_GeoEqu2TopoEqu($moonCoor{ra}, $moonCoor{dec}, $moonCoor{distance}, $observerlon, $observerlat, $observerradius, $lmst);
- #-- now ra and dec are topocentric
- $moonCoor{ra} = $raTopocentric;
- $moonCoor{dec} = $decTopocentric;
- ($moonCoor{az},$moonCoor{alt})= Astro_Equ2Altaz($moonCoor{ra}, $moonCoor{dec}, $TDT, $observerlat, $lmst);
- }
-
- #-- Age of Moon in radians since New Moon (0) - Full Moon (pi)
- $moonCoor{age} = Astro_mod2Pi($l3-$sunlon);
- $moonCoor{phasen} = 0.5*(1-cos($moonCoor{age})); # Moon phase numerical, 0-1
-
- my $mainPhase = 1./29.53*360*$DEG; # show 'Newmoon, 'Quarter' for +/-1 day around the actual event
- my $p = Astro_mod($moonCoor{age}, 90.*$DEG);
- if ($p < $mainPhase || $p > 90*$DEG-$mainPhase){
- $p = 2*floor($moonCoor{age} / (90.*$DEG)+0.5);
- }else{
- $p = 2*floor($moonCoor{age} / (90.*$DEG))+1;
- }
- $p = $p % 8;
- $moonCoor{phases} = $phases[$p];
- $moonCoor{phasei} = $p;
- $moonCoor{sig} = $zodiac[floor($moonCoor{lon}*$RAD/30)];
- return ( \%moonCoor );
- }
- ########################################################################################################
- #
- # Astro_Refraction - Input true altitude in radians, Output: increase in altitude in degrees
- #
- ########################################################################################################
- sub Astro_Refraction($){
- my ($alt) = @_;
- my $altdeg = $alt*$RAD;
- if ($altdeg<-2 || $altdeg>=90){
- return(0);
- }
-
- my $pressure = 1015;
- my $temperature = 10;
- if ($altdeg>15){
- return( 0.00452*$pressure/( (273+$temperature)*tan($alt)) );
- }
-
- my $y = $alt;
- my $D = 0.0;
- my $P = ($pressure-80.)/930.;
- my $Q = 0.0048*($temperature-10.);
- my $y0 = $y;
- my $D0 = $D;
- my $N;
- for (my $i=0; $i<3; $i++) {
- $N = $y+(7.31/($y+4.4));
- $N = 1./tan($N*$DEG);
- $D = $N*$P/(60.+$Q*($N+39.));
- $N = $y-$y0;
- $y0 = $D-$D0-$N;
- if (($N != 0.) && ($y0 != 0.)) {
- $N = $y-$N*($alt+$D-$y)/$y0;
- } else {
- $N = $alt+$D;
- }
- $y0 = $y;
- $D0 = $D;
- $y = $N;
- }
- return( $D );
- }
- ########################################################################################################
- #
- # Astro_GMSTRiseSet - returns Greenwich sidereal time (hours) of time of rise
- # and set of object with coordinates ra/dec
- # at geographic position lon/lat (all values in radians)
- # Correction for refraction and semi-diameter/parallax of body is taken care of in function RiseSet
- # h is used to calculate the twilights. It gives the required elevation of the disk center of the sun
- #
- ########################################################################################################
- sub Astro_GMSTRiseSet($$$$$){
- my ($ra, $dec, $lon, $lat, $h) = @_;
-
- $h = (defined($h)) ? $h : 0.0; # set default value
- #Log 1,"-------------------> Called Astro_GMSTRiseSet with $ra $dec $lon $lat $h";
- # my $tagbogen = acos(-tan(lat)*tan(coor.dec)); // simple formula if twilight is not required
- my $tagbogen = acos((sin($h) - sin($lat)*sin($dec)) / (cos($lat)*cos($dec)));
- my $transit = $RAD/15*( +$ra-$lon);
- my $rise = 24.+$RAD/15*(-$tagbogen+$ra-$lon); # calculate GMST of rise of object
- my $set = $RAD/15*(+$tagbogen+$ra-$lon); # calculate GMST of set of object
- #--Using the modulo function Astro_mod, the day number goes missing. This may get a problem for the moon
- $transit = Astro_mod($transit, 24);
- $rise = Astro_mod($rise, 24);
- $set = Astro_mod($set, 24);
-
- return( ($transit, $rise, $set) );
- }
- ########################################################################################################
- #
- # Astro_InterpolateGMST - Find GMST of rise/set of object from the two calculated
- # (start)points (day 1 and 2) and at midnight UT(0)
- #
- ########################################################################################################
- sub Astro_InterpolateGMST($$$$){
- my ($gmst0, $gmst1, $gmst2, $timefactor) = @_;
- return( ($timefactor*24.07*$gmst1- $gmst0*($gmst2-$gmst1)) / ($timefactor*24.07+$gmst1-$gmst2) );
- }
- ########################################################################################################
- #
- # Astro_RiseSet
- # // JD is the Julian Date of 0h UTC time (midnight)
- #
- ########################################################################################################
- sub Astro_RiseSet($$$$$$$$$$$){
- my ($jd0UT, $diameter, $parallax, $ra1, $dec1, $ra2, $dec2, $lon, $lat, $timeinterval, $altip) = @_;
-
- #--altitude of sun center: semi-diameter, horizontal parallax and (standard) refraction of 34'
- # true height of sun center for sunrise and set calculation. Is kept 0 for twilight (ie. altitude given):
- my $alt = (!defined($altip)) ? 0.5*$diameter-$parallax+34./60*$DEG : 0.;
- my $altitude = (!defined($altip)) ? 0. : $altip;
- my ($transit1, $rise1, $set1) = Astro_GMSTRiseSet($ra1, $dec1, $lon, $lat, $altitude);
- my ($transit2, $rise2, $set2) = Astro_GMSTRiseSet($ra2, $dec2, $lon, $lat, $altitude);
-
- #-- unwrap GMST in case we move across 24h -> 0h
- $transit2 += 24
- if ($transit1 > $transit2 && abs($transit1-$transit2)>18);
- $rise2 += 24
- if ($rise1 > $rise2 && abs($rise1-$rise2)>18);
- $set2 += 24
- if ($set1 > $set2 && abs($set1-$set2)>18);
-
- my $T0 = Astro_GMST($jd0UT);
- # my $T02 = T0-zone*1.002738; // Greenwich sidereal time at 0h time zone (zone: hours)
- #-- Greenwich sidereal time for 0h at selected longitude
- my $T02 = $T0-$lon*$RAD/15*1.002738;
- $T02 +=24 if ($T02 < 0);
- if ($transit1 < $T02) {
- $transit1 += 24;
- $transit2 += 24;
- }
- if ($rise1 < $T02) {
- $rise1 += 24;
- $rise2 += 24;
- }
- if ($set1 < $T02) {
- $set1 += 24;
- $set2 += 24;
- }
-
- #-- Refraction and Parallax correction
- my $decMean = 0.5*($dec1+$dec2);
- my $psi = acos(sin($lat)/cos($decMean));
- my $y = asin(sin($alt)/sin($psi));
- my $dt = 240*$RAD*$y/cos($decMean)/3600; # time correction due to refraction, parallax
- my $transit = Astro_GMST2UT( $jd0UT, Astro_InterpolateGMST( $T0, $transit1, $transit2, $timeinterval) );
- my $rise = Astro_GMST2UT( $jd0UT, Astro_InterpolateGMST( $T0, $rise1, $rise2, $timeinterval) - $dt );
- my $set = Astro_GMST2UT( $jd0UT, Astro_InterpolateGMST( $T0, $set1, $set2, $timeinterval) + $dt );
-
- return( ($transit,$rise,$set) );
- }
- ########################################################################################################
- #
- # Astro_SunRise - Find (local) time of sunrise and sunset, and twilights
- # JD is the Julian Date of 0h local time (midnight)
- # Accurate to about 1-2 minutes
- # recursive: 1 - calculate rise/set in UTC in a second run
- # recursive: 0 - find rise/set on the current local day.
- # This is set when doing the first call to this function
- #
- ########################################################################################################
- sub Astro_SunRise($$$$$$){
- my ($JD, $deltaT, $lon, $lat, $zone, $recursive) = @_;
-
- my $jd0UT = floor($JD-0.5)+0.5; # JD at 0 hours UT
-
- #-- calculations for noon
- my $sunCoor1 = Astro_SunPosition($jd0UT+ $deltaT/24./3600.,undef,undef);
- #-- calculations for next day's UTC midnight
- my $sunCoor2 = Astro_SunPosition($jd0UT+1.+$deltaT/24./3600.,undef,undef);
-
- #-- rise/set time in UTC
- my ($transit,$rise,$set) = Astro_RiseSet($jd0UT, $sunCoor1->{diameter}, $sunCoor1->{parallax},
- $sunCoor1->{ra}, $sunCoor1->{dec}, $sunCoor2->{ra}, $sunCoor2->{dec}, $lon, $lat, 1,undef);
-
- my ($transittemp,$risetemp,$settemp);
- #-- check and adjust to have rise/set time on local calendar day
- if ( $recursive==0 ) {
- if ($zone>0) {
- #rise time was yesterday local time -> calculate rise time for next UTC day
- if ($rise >=24-$zone || $transit>=24-$zone || $set>=24-$zone) {
- ($transittemp,$risetemp,$settemp) = Astro_SunRise($JD+1, $deltaT, $lon, $lat, $zone, 1);
- $transit = $transittemp
- if ($transit>=24-$zone);
- $rise = $risetemp
- if ($rise>=24-$zone);
- $set = $settemp
- if ($set>=24-$zone);
- }
- }elsif ($zone<0) {
- #rise time was yesterday local time -> calculate rise time for previous UTC day
- if ($rise<-$zone || $transit<-zone || $set<-zone) {
- ($transittemp,$risetemp,$settemp) = Astro_SunRise($JD-1, $deltaT, $lon, $lat, $zone, 1);
- $rise = $risetemp
- if ($rise<-$zone);
- $transit = $transittemp
- if ($transit<-$zone);
- $set = $settemp
- if ($set <-$zone);
- }
- }
-
- $transit = Astro_mod($transit+$zone, 24.);
- $rise = Astro_mod($rise +$zone, 24.);
- $set = Astro_mod($set +$zone, 24.);
- #-- Twilight calculation
- #-- civil twilight time in UTC.
- ($transittemp,$risetemp,$settemp) = Astro_RiseSet($jd0UT, $sunCoor1->{diameter}, $sunCoor1->{parallax},
- $sunCoor1->{ra}, $sunCoor1->{dec}, $sunCoor2->{ra}, $sunCoor2->{dec}, $lon, $lat, 1, -6.*$DEG);
- my $CivilTwilightMorning = Astro_mod($risetemp +$zone, 24.);
- my $CivilTwilightEvening = Astro_mod($settemp +$zone, 24.);
- #-- nautical twilight time in UTC.
- ($transittemp,$risetemp,$settemp) = Astro_RiseSet($jd0UT, $sunCoor1->{diameter}, $sunCoor1->{parallax},
- $sunCoor1->{ra}, $sunCoor1->{dec}, $sunCoor2->{ra}, $sunCoor2->{dec}, $lon, $lat, 1, -12.*$DEG);
- my $NauticTwilightMorning = Astro_mod($risetemp +$zone, 24.);
- my $NauticTwilightEvening = Astro_mod($settemp +$zone, 24.);
- #-- astronomical twilight time in UTC.
- ($transittemp,$risetemp,$settemp) = Astro_RiseSet($jd0UT, $sunCoor1->{diameter}, $sunCoor1->{parallax},
- $sunCoor1->{ra}, $sunCoor1->{dec}, $sunCoor2->{ra}, $sunCoor2->{dec}, $lon, $lat, 1, -18.*$DEG);
- my $AstroTwilightMorning = Astro_mod($risetemp +$zone, 24.);
- my $AstroTwilightEvening = Astro_mod($settemp +$zone, 24.);
-
- #-- custom twilight time in UTC
- ($transittemp,$risetemp,$settemp) = Astro_RiseSet($jd0UT, $sunCoor1->{diameter}, $sunCoor1->{parallax},
- $sunCoor1->{ra}, $sunCoor1->{dec}, $sunCoor2->{ra}, $sunCoor2->{dec}, $lon, $lat, 1, $Astro{ObsHor}*$DEG);
- my $CustomTwilightMorning = Astro_mod($risetemp +$zone, 24.);
- my $CustomTwilightEvening = Astro_mod($settemp +$zone, 24.);
-
- return( ($transit,$rise,$set,$CivilTwilightMorning,$CivilTwilightEvening,
- $NauticTwilightMorning,$NauticTwilightEvening,$AstroTwilightMorning,$AstroTwilightEvening,$CustomTwilightMorning,$CustomTwilightEvening) );
- }else{
- return( ($transit,$rise,$set) );
- }
- }
- ########################################################################################################
- #
- # Astro_MoonRise - Find local time of moonrise and moonset
- # JD is the Julian Date of 0h local time (midnight)
- # Accurate to about 5 minutes or better
- # recursive: 1 - calculate rise/set in UTC
- # recursive: 0 - find rise/set on the current local day (set could also be first)
- # returns '' for moonrise/set does not occur on selected day
- #
- ########################################################################################################
- sub Astro_MoonRise($$$$$$$){
- my ($JD, $deltaT, $lon, $lat, $radius, $zone, $recursive) = @_;
- my $timeinterval = 0.5;
-
- my $jd0UT = floor($JD-0.5)+0.5; # JD at 0 hours UT
- #-- calculations for noon
- my $sunCoor1 = Astro_SunPosition($jd0UT+ $deltaT/24./3600.,undef,undef);
- my $moonCoor1 = Astro_MoonPosition($sunCoor1->{lon}, $sunCoor1->{anomalyMean}, $jd0UT+ $deltaT/24./3600.,undef,undef,undef,undef);
-
- #-- calculations for next day's midnight
- my $sunCoor2 = Astro_SunPosition($jd0UT +$timeinterval + $deltaT/24./3600.,undef,undef);
- my $moonCoor2 = Astro_MoonPosition($sunCoor2->{lon}, $sunCoor2->{anomalyMean}, $jd0UT +$timeinterval + $deltaT/24./3600.,undef,undef,undef,undef);
- # rise/set time in UTC, time zone corrected later.
- # Taking into account refraction, semi-diameter and parallax
- my ($transit,$rise,$set) = Astro_RiseSet($jd0UT, $moonCoor1->{diameter}, $moonCoor1->{parallax},
- $moonCoor1->{ra}, $moonCoor1->{dec}, $moonCoor2->{ra}, $moonCoor2->{dec}, $lon, $lat, $timeinterval,undef);
- my ($transittemp,$risetemp,$settemp);
- my ($transitprev,$riseprev,$setprev);
-
- # check and adjust to have rise/set time on local calendar day
- if ( $recursive==0 ) {
- if ($zone>0) {
- # recursive call to MoonRise returns events in UTC
- ($transitprev,$riseprev,$setprev) = Astro_MoonRise($JD-1., $deltaT, $lon, $lat, $radius, $zone, 1);
- if ($transit >= 24.-$zone || $transit < -$zone) { # transit time is tomorrow local time
- if ($transitprev < 24.-$zone){
- $transit = ""; # there is no moontransit today
- }else{
- $transit = $transitprev;
- }
- }
-
- if ($rise >= 24.-$zone || $rise < -$zone) { # rise time is tomorrow local time
- if ($riseprev < 24.-$zone){
- $rise = ""; # there is no moontransit today
- }else{
- $rise = $riseprev;
- }
- }
- if ($set >= 24.-$zone || $set < -$zone) { # set time is tomorrow local time
- if ($setprev < 24.-$zone){
- $set = ""; # there is no moontransit today
- }else{
- $set = $setprev;
- }
- }
- }elsif ($zone<0) { # rise/set time was tomorrow local time -> calculate rise time for previous UTC day
- if ($rise<-$zone || $set<-$zone || $transit<-$zone) {
- ($transittemp,$risetemp,$settemp) = Astro_MoonRise($JD+1., $deltaT, $lon, $lat, $radius, $zone, 1);
- if ($rise < -$zone) {
- if ($risetemp > -$zone){
- $rise = ''; # there is no moonrise today
- }else{
- $rise = $risetemp;
- }
- }
-
- if ($transit < -zone){
- if ($transittemp > -zone){
- $transit = ''; # there is no moonset today
- }else{
- $transit = $transittemp;
- }
- }
-
- if ($set < -zone){
- if ($settemp > -zone){
- $set = ''; # there is no moonset today
- }else{
- $set = $settemp;
- }
- }
- }
- }
- #-- correct for time zone, if time is valid
- $transit = Astro_mod($transit +$zone, 24.)
- if( $transit ne "");
- $rise = Astro_mod($rise +$zone, 24.)
- if ($rise ne "");
- $set = Astro_mod($set +$zone, 24.)
- if ($set ne "");
- }
- return( ($transit,$rise,$set) );
- }
- ########################################################################################################
- #
- # Astro_Compute - sequential calculation of properties
- #
- ########################################################################################################
-
- sub Astro_Compute($){
- my ($hash) = @_;
- my $name = $hash->{NAME};
-
- #-- readjust language
- my $lang = AttrVal("global","language","EN");
- if( $lang eq "DE"){
- $astro_tt = \%astro_transtable_DE;
- }else{
- $astro_tt = \%astro_transtable_EN;
- }
-
- return undef if( !$init_done );
- #-- geodetic latitude and longitude of observer on WGS84
- if( defined($attr{$name}{"latitude"}) ){
- $Astro{ObsLat} = $attr{$name}{"latitude"};
- }elsif( defined($attr{"global"}{"latitude"}) ){
- $Astro{ObsLat} = $attr{"global"}{"latitude"};
- }else{
- $Astro{ObsLat} = 50.0;
- Log3 $name,3,"[Astro] No latitude attribute set in global device, using 50.0°";
- }
- if( defined($attr{$name}{"longitude"}) ){
- $Astro{ObsLon} = $attr{$name}{"longitude"};
- }elsif( defined($attr{"global"}{"longitude"}) ){
- $Astro{ObsLon} = $attr{"global"}{"longitude"};
- }else{
- $Astro{ObsLon} = 10.0;
- Log3 $name,3,"[Astro] No longitude attribute set in global device, using 10.0°";
- }
- #-- altitude of observer in meters above WGS84 ellipsoid
- if( defined($attr{$name}{"altitude"}) ){
- $Astro{ObsAlt} = $attr{$name}{"altitude"};
- }elsif( defined($attr{"global"}{"altitude"}) ){
- $Astro{ObsAlt} = $attr{"global"}{"altitude"};
- }else{
- $Astro{ObsAlt} = 0.0;
- Log3 $name,3,"[Astro] No altitude attribute set in global device, using 0.0 m above sea level";
- }
- #-- custom horizon of observer in degrees
- if( defined($attr{$name}{"horizon"}) ){
- $Astro{ObsHor} = $attr{$name}{"horizon"};
- }else{
- $Astro{ObsHor} = 0.0;
- Log3 $name,5,"[Astro] No horizon attribute defined, using 0.0°";
- }
-
- #-- internal variables converted to Radians and km
- my $lat = $Astro{ObsLat}*$DEG;
- my $lon = $Astro{ObsLon}*$DEG;
- my $height = $Astro{ObsAlt} * 0.001;
- #if (eval(form.Year.value)<=1900 || eval(form.Year.value)>=2100 ) {
- # alert("Dies Script erlaubt nur Berechnungen"+
- # return;
- #}
- my $JD0 = Astro_CalcJD( $Date{day}, $Date{month}, $Date{year} );
- my $JD = $JD0 + ( $Date{hour} - $Date{zonedelta} + $Date{min}/60. + $Date{sec}/3600.)/24;
- my $TDT = $JD + $deltaT/86400.0;
-
- $Astro{ObsJD} = Astro_round($JD,2);
- my $gmst = Astro_GMST($JD);
- $Astro{ObsGMST} = Astro_HHMMSS($gmst);
- my $lmst = Astro_GMST2LMST($gmst, $lon);
- $Astro{ObsLMST} = Astro_HHMMSS($lmst);
-
- #-- geocentric cartesian coordinates of observer
- my ($x,$y,$z,$radius) = Astro_Observer2EquCart($lon, $lat, $height, $gmst);
-
- #-- calculate data for the sun at given time
- my $sunCoor = Astro_SunPosition($TDT, $lat, $lmst*15.*$DEG);
- $Astro{SunLon} = Astro_round($sunCoor->{lon}*$RAD,1);
- #$Astro{SunLat} = $sunCoor->{lat}*$RAD;
- $Astro{SunRa} = Astro_round($sunCoor->{ra} *$RAD/15,1);
- $Astro{SunDec} = Astro_round($sunCoor->{dec}*$RAD,1);
- $Astro{SunAz} = Astro_round($sunCoor->{az} *$RAD,1);
- $Astro{SunAlt} = Astro_round($sunCoor->{alt}*$RAD + Astro_Refraction($sunCoor->{alt}),1); # including refraction WARNUNG => *RAD ???
- $Astro{SunSign} = $astro_tt->{$sunCoor->{sig}};
- $Astro{SunDiameter}=Astro_round($sunCoor->{diameter}*$RAD*60,1); #angular diameter in arc seconds
- $Astro{SunDistance}=Astro_round($sunCoor->{distance},0);
-
- #-- calculate distance from the observer (on the surface of earth) to the center of the sun
- my ($xs,$ys,$zs) = Astro_EquPolar2Cart($sunCoor->{ra}, $sunCoor->{dec}, $sunCoor->{distance});
- $Astro{SunDistanceObserver} = Astro_round(sqrt( ($xs-$x)**2 + ($ys-$y)**2 + ($zs-$z)**2 ),0);
-
- my ($suntransit,$sunrise,$sunset,$CivilTwilightMorning,$CivilTwilightEvening,
- $NauticTwilightMorning,$NauticTwilightEvening,$AstroTwilightMorning,$AstroTwilightEvening,$CustomTwilightMorning,$CustomTwilightEvening) =
- Astro_SunRise($JD0, $deltaT, $lon, $lat, $Date{zonedelta}, 0);
- $Astro{SunTransit} = Astro_HHMM($suntransit);
- $Astro{SunRise} = Astro_HHMM($sunrise);
- $Astro{SunSet} = Astro_HHMM($sunset);
- $Astro{CivilTwilightMorning} = Astro_HHMM($CivilTwilightMorning);
- $Astro{CivilTwilightEvening} = Astro_HHMM($CivilTwilightEvening);
- $Astro{NauticTwilightMorning} = Astro_HHMM($NauticTwilightMorning);
- $Astro{NauticTwilightEvening} = Astro_HHMM($NauticTwilightEvening);
- $Astro{AstroTwilightMorning} = Astro_HHMM($AstroTwilightMorning);
- $Astro{AstroTwilightEvening} = Astro_HHMM($AstroTwilightEvening);
- $Astro{CustomTwilightMorning} = Astro_HHMM($CustomTwilightMorning);
- $Astro{CustomTwilightEvening} = Astro_HHMM($CustomTwilightEvening);
-
- #-- calculate data for the moon at given time
- my $moonCoor = Astro_MoonPosition($sunCoor->{lon}, $sunCoor->{anomalyMean}, $TDT, $lon, $lat, $radius, $lmst*15.*$DEG);
- $Astro{MoonLon} = Astro_round($moonCoor->{lon}*$RAD,1);
- $Astro{MoonLat} = Astro_round($moonCoor->{lat}*$RAD,1);
- $Astro{MoonRa} = Astro_round($moonCoor->{ra} *$RAD/15.,1);
- $Astro{MoonDec} = Astro_round($moonCoor->{dec}*$RAD,1);
- $Astro{MoonAz} = Astro_round($moonCoor->{az} *$RAD,1);
- $Astro{MoonAlt} = Astro_round($moonCoor->{alt}*$RAD + Astro_Refraction($moonCoor->{alt}),1); # including refraction WARNUNG => *RAD ???
- $Astro{MoonSign} = $astro_tt->{$moonCoor->{sig}};
- $Astro{MoonDistance} = Astro_round($moonCoor->{distance},0);
- $Astro{MoonDiameter} = Astro_round($moonCoor->{diameter}*$RAD*60.,1); # angular diameter in arc seconds
- $Astro{MoonAge} = Astro_round($moonCoor->{age}*$RAD,1);
- $Astro{MoonPhaseN} = Astro_round($moonCoor->{phasen},2);
- $Astro{MoonPhaseI} = $astro_tt->{$moonCoor->{phasei}};
- $Astro{MoonPhaseS} = $astro_tt->{$moonCoor->{phases}};
-
- #-- calculate distance from the observer (on the surface of earth) to the center of the moon
- my ($xm,$ym,$zm) = Astro_EquPolar2Cart($moonCoor->{ra}, $moonCoor->{dec}, $moonCoor->{distance});
- #Log 1," distance=".$moonCoor->{distance}." test=".sqrt( ($xm)**2 + ($ym)**2 + ($zm)**2 )." $xm $ym $zm";
- #Log 1," distance=".$radius." test=".sqrt( ($x)**2 + ($y)**2 + ($z)**2 )." $x $y $z";
- $Astro{MoonDistanceObserver} = Astro_round(sqrt( ($xm-$x)**2 + ($ym-$y)**2 + ($zm-$z)**2 ),0);
-
- my ($moontransit,$moonrise,$moonset) = Astro_MoonRise($JD0, $deltaT, $lon, $lat, $radius, $Date{zonedelta}, 0);
- $Astro{MoonTransit} = Astro_HHMM($moontransit);
- $Astro{MoonRise} = Astro_HHMM($moonrise);
- $Astro{MoonSet} = Astro_HHMM($moonset);
-
- #-- fix date
- $Astro{ObsDate}= sprintf("%02d.%02d.%04d",$Date{day},$Date{month},$Date{year});
- $Astro{ObsTime}= sprintf("%02d:%02d:%02d",$Date{hour},$Date{min},$Date{sec});
- $Astro{ObsTimezone}= $Date{zonedelta};
-
- #-- check season
- my $doj = $Date{dayofyear};
- $Astro{ObsDayofyear} = $doj;
-
- for( my $i=0;$i<4;$i++){
- my $key = $seasons[$i];
- if( (($seasonn{$key}[0] < $seasonn{$key}[1]) && ($seasonn{$key}[0] <= $doj) && ($seasonn{$key}[1] >= $doj))
- || (($seasonn{$key}[0] > $seasonn{$key}[1]) && (($seasonn{$key}[0] <= $doj) || ($seasonn{$key}[1] >= $doj))) ){
- $Astro{ObsSeason} = $astro_tt->{$key};
- $Astro{ObsSeasonN} = $i;
- last;
- }
- }
-
- return( undef );
- };
- ########################################################################################
- #
- # Astro_moonwidget - SVG picture of the moon
- #
- # Parameter hash = hash of the bus master a = argument array
- #
- ########################################################################################
- sub Astro_moonwidget($){
- my ($arg) = @_;
- my $name = $FW_webArgs{name};
- $name =~ s/'//g;
- my $hash = $defs{$name};
-
- my $mooncolor = 'rgb(255,220,100)';
- my $moonshadow = 'rgb(70,70,100)';
- ;
- my $colorscheme = ($FW_webArgs{color} ? $FW_webArgs{color} : 'none');
- if( $colorscheme eq 'light' ){
- $mooncolor = 'rgb(255,220,180)';
- $moonshadow = 'rgb(210,210,210)';
- }
- $mooncolor = $FW_webArgs{mooncolor}
- if ($FW_webArgs{mooncolor} );
- $moonshadow = $FW_webArgs{moonshadow}
- if ($FW_webArgs{moonshadow} );
-
- my @size = split('x', ($FW_webArgs{size} ? $FW_webArgs{size} : '400x400'));
-
- $FW_RETTYPE = "image/svg+xml";
- $FW_RET="";
- FW_pO '<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 800 800" width="'.$size[0].'px" height="'.$size[1].'px">';
- my $ma = Astro_Get($hash,("","text","MoonAge"));
- my $mb = Astro_Get($hash,("","text","MoonPhaseS"));
- my ($radius,$axis,$dir,$start,$middle);
- $radius = 250;
- $axis = sin(($ma+90)*$DEG)*$radius;
- $axis = -$axis
- if ($axis < 0);
-
- if( (0.0 <= $ma && $ma <= 90) || (270.0 < $ma && $ma <= 360.0) ){
- $dir = 1;
- }else{
- $dir = 0;
- }
- if( 0.0 < $ma && $ma <= 180 ){
- $start = $radius;
- $middle = -$radius;
- }else{
- $start = -$radius;
- $middle = $radius;
- }
-
- FW_pO '<g transform="translate(400,400) scale(-1,1)">';
- FW_pO '<circle cx="0" cy="0" r="250" fill="'.$moonshadow.'"/>';
- FW_pO '<path d="M 0 '.$start.' A '.$axis.' '.$radius.' 0 0 '.$dir.' 0 '.$middle.' A '.$radius.' '.$radius.' 0 0 0 0 '.$start.' Z" fill="'.$mooncolor.'"/>';
- FW_pO '</g>';
- #FW_pO '<text x="100" y="710" style="font-family:Helvetica;font-size:60px;font-weight:bold" fill="black">'.$mb.'</text>';
- FW_pO '</svg>';
- return ($FW_RETTYPE, $FW_RET);
- }
- ########################################################################################
- #
- # Astro_Update - Update readings
- #
- # Parameter hash = hash of the bus master a = argument array
- #
- ########################################################################################
- sub Astro_Update($@) {
- my ($hash) = @_;
-
- my $name = $hash->{NAME};
- RemoveInternalTimer($hash);
- my $interval = ( defined($hash->{INTERVAL})) ? $hash->{INTERVAL} : 3600;
-
- InternalTimer(gettimeofday()+ $interval, "Astro_Update", $hash,1)
- if( $interval > 0 );
- #-- Current time will be used
- my ($sec, $min, $hour, $day, $month, $year, $wday, $yday, $isdst) = localtime(time);
- $year += 1900;
- $month += 1;
- $Date{year} = $year;
- $Date{month}= $month;
- $Date{day} = $day;
- $Date{hour} = $hour;
- $Date{min} = $min;
- $Date{sec} = $sec;
- #-- broken on windows
- #$Date{zonedelta} = (strftime "%z", localtime)/100;
- $Date{zonedelta} = Astro_tzoffset(time)/100;
- #-- half broken in windows
- $Date{dayofyear} = 1*strftime("%j", localtime);
-
- Astro_Compute($hash);
-
- readingsBeginUpdate($hash);
- foreach my $key (keys %Astro){
- readingsBulkUpdate($hash,$key,$Astro{$key});
- }
- readingsEndUpdate($hash,1);
- }
- ########################################################################################
- #
- # Astro_Get - Implements GetFn function
- #
- # Parameter hash = hash of the bus master a = argument array
- #
- ########################################################################################
- sub Astro_Get($@) {
- my ($hash, @a) = @_;
-
- my $name = $hash->{NAME};
-
- my $wantsreading = 0;
-
- #-- second parameter may be a reading
- if( (int(@a)>2) && exists($Astro{$a[2]})) {
- $wantsreading = 1;
- #Log 1,"=================> WANT as ".$a[1]." READING ".$a[2]." GET READING ".$Astro{$a[2]};
- }
-
- if( int(@a) > (2+$wantsreading) ) {
- my $str = (int(@a) == (4+$wantsreading)) ? $a[2+$wantsreading]." ".$a[3+$wantsreading] : $a[2+$wantsreading];
- if( $str =~ /(\d{4})-(\d{2})-(\d{2})(\D*(\d{2}):(\d{2})(:(\d{2}))?)?/){
- $Date{year} = $1;
- $Date{month}= $2;
- $Date{day} = $3;
- $Date{hour} = (defined($5)) ? $5 : 12;
- $Date{min} = (defined($6)) ? $6 : 0;
- $Date{sec} = (defined($8)) ? $8 : 0;
- my $fTot = timelocal($Date{sec},$Date{min},$Date{hour},$Date{day},$Date{month}-1,$Date{year});
- #-- broken on windows
- #$Date{zonedelta} = (strftime "%z", localtime($fTot))/100;
- $Date{zonedelta} = Astro_tzoffset($fTot)/100;
- #-- half broken in windows
- $Date{dayofyear} = 1*strftime("%j", localtime($fTot));
- }else{
- return "[Astro_Get] $name has improper time specification $str, use YYYY-MM-DD HH:MM:SS";
- }
- }else{
- #-- Current time will be used
- my ($sec, $min, $hour, $day, $month, $year, $wday, $yday, $isdst) = localtime(time);
- $year += 1900;
- $month += 1;
- $Date{year} = $year;
- $Date{month}= $month;
- $Date{day} = $day;
- $Date{hour} = $hour;
- $Date{min} = $min;
- $Date{sec} = $sec;
- #-- broken on windows
- #$Date{zonedelta} = (strftime "%z", localtime)/100;
- $Date{zonedelta} = Astro_tzoffset(time)/100;
- #-- half broken in windows
- $Date{dayofyear} = 1*strftime("%j", localtime);
- }
- if( $a[1] eq "version") {
- return $astroversion;
-
- }elsif( $a[1] eq "json") {
- Astro_Compute($hash);
- if( $wantsreading==1 ){
- return toJSON($Astro{$a[2]});
- }else{
- return toJSON(\%Astro);
- }
-
- }elsif( $a[1] eq "text") {
-
- Astro_Compute($hash);
- if( $wantsreading==1 ){
- return $Astro{$a[2]};
- }else{
- my $ret=sprintf("%s %s %s \n",$astro_tt->{"date"},$Astro{ObsDate},$Astro{ObsTime});
- $ret .= sprintf("%s %.2f %s, %d %s\n",$astro_tt->{"jdate"},$Astro{ObsJD},$astro_tt->{"days"},$Astro{ObsDayofyear},$astro_tt->{"dayofyear"});
- $ret .= sprintf("%s %s, %s %2d\n",$astro_tt->{"season"},$Astro{ObsSeason},$astro_tt->{"timezone"},$Astro{ObsTimezone});
- $ret .= sprintf("%s %.5f° %s, %.5f° %s, %.0fm %s\n",$astro_tt->{"coord"},$Astro{ObsLon},$astro_tt->{"longitude"},
- $Astro{ObsLat},$astro_tt->{"latitude"},$Astro{ObsAlt},$astro_tt->{"altitude"});
- $ret .= sprintf("%s %s \n\n",$astro_tt->{"lmst"},$Astro{ObsLMST});
- $ret .= "\n".$astro_tt->{"sun"}."\n";
- $ret .= sprintf("%s %s %s %s %s %s\n",$astro_tt->{"rise"},$Astro{SunRise},$astro_tt->{"set"},$Astro{SunSet},$astro_tt->{"transit"},$Astro{SunTransit});
- $ret .= sprintf("%s %s - %s\n",$astro_tt->{"twilightcivil"},$Astro{CivilTwilightMorning},$Astro{CivilTwilightEvening});
- $ret .= sprintf("%s %s - %s\n",$astro_tt->{"twilightnautic"},$Astro{NauticTwilightMorning},$Astro{NauticTwilightEvening});
- $ret .= sprintf("%s %s - %s\n",$astro_tt->{"twilightastro"},$Astro{AstroTwilightMorning},$Astro{AstroTwilightEvening});
- $ret .= sprintf("%s: %.0fkm %s (%.0fkm %s)\n",$astro_tt->{"distance"},$Astro{SunDistance},$astro_tt->{"toce"},$Astro{SunDistanceObserver},$astro_tt->{"toobs"});
- $ret .= sprintf("%s: %s %2.1f°, %s %2.2fh, %s %2.1f°; %s %2.1f°, %s %2.1f°\n",
- $astro_tt->{"position"},$astro_tt->{"lonecl"},$Astro{SunLon},$astro_tt->{"ra"},
- $Astro{SunRa},$astro_tt->{"dec"},$Astro{SunDec},$astro_tt->{"az"},$Astro{SunAz},$astro_tt->{"alt"},$Astro{SunAlt});
- $ret .= sprintf("%s %2.1f', %s %s\n\n",$astro_tt->{"diameter"},$Astro{SunDiameter},$astro_tt->{"sign"},$Astro{SunSign});
- $ret .= "\n".$astro_tt->{"moon"}."\n";
- $ret .= sprintf("%s %s %s %s %s %s\n",$astro_tt->{"rise"},$Astro{MoonRise},$astro_tt->{"set"},$Astro{MoonSet},$astro_tt->{"transit"},$Astro{MoonTransit});
- $ret .= sprintf("%s: %.0fkm %s (%.0fkm %s)\n",$astro_tt->{"distance"},$Astro{MoonDistance},$astro_tt->{"toce"},$Astro{MoonDistanceObserver},$astro_tt->{"toobs"});
- $ret .= sprintf("%s: %s %2.1f°, %s %2.1f°; %s %2.2fh, %s %2.1f°; %s %2.1f°, %s %2.1f°\n",
- $astro_tt->{"position"},$astro_tt->{"lonecl"},$Astro{MoonLon},$astro_tt->{"latecl"},$Astro{MoonLat},$astro_tt->{"ra"},
- $Astro{MoonRa},$astro_tt->{"dec"},$Astro{MoonDec},$astro_tt->{"az"},$Astro{MoonAz},$astro_tt->{"alt"},$Astro{MoonAlt});
- $ret .= sprintf("%s %2.1f', %s %2.1f°, %s %1.2f = %s, %s %s\n",$astro_tt->{"diameter"},
- $Astro{MoonDiameter},$astro_tt->{"age"},$Astro{MoonAge},$astro_tt->{"phase"},$Astro{MoonPhaseN},$Astro{MoonPhaseS},$astro_tt->{"sign"},$Astro{MoonSign});
- return $ret;
- }
- }else {
- return "[Astro_Get] $name with unknown argument $a[1], choose one of ".
- join(" ", sort keys %gets);
- }
- }
- 1;
- =pod
- =item helper
- =item summary collection of various routines for astronomical data
- =item summary_DE Sammlung verschiedener Routinen für astronomische Daten
- =begin html
- <a name="Astro"></a>
- <h3>Astro</h3>
- <ul>
- <p> FHEM module with a collection of various routines for astronomical data</p>
- <a name="Astrodefine"></a>
- <h4>Define</h4>
- <p>
- <code>define <name> Astro</code>
- <br />Defines the Astro device (only one is needed per FHEM installation). </p>
- <p>
- Readings with prefix <i>Sun</i> refer to the sun, with prefix <i>Moon</i> refer to the moon.
- The suffixes for these readings are
- <ul>
- <li><i>Age</i> = angle (in degrees) of body along its track</li>
- <li><i>Az,Alt</i> = azimuth and altitude angle (in degrees) of body above horizon</li>
- <li><i>Dec,Ra</i> = declination (in degrees) and right ascension (in HH:MM) of body position</li>
- <li><i>Lat,Lon</i> = latitude and longituds (in degrees) of body position</li>
- <li><i>Diameter</i> = virtual diameter (in arc minutes) of body</li>
- <li><i>Distance,DistanceObserver</i> = distance (in km) of body to center of earth or to observer</li>
- <li><i>PhaseN,PhaseS</i> = Numerical and string value for phase of body</li>
- <li><i>Sign</i> = Circadian sign for body along its track</li>
- <li><i>Rise,Transit,Set</i> = times (in HH:MM) for rise and set as well as for highest position of body</li>
- </ul>
- <p>
- Readings with prefix <i>Obs</i> refer to the observer.
- In addition to some of the suffixes gives above, the following may occur
- <ul>
- <li><i>Date,Dayofyear</i> = date</li>
- <li><i>JD</i> = Julian date</li>
- <li><i>Season,SeasonN</i> = String and numerical (0..3) value of season</li>
- <li><i>Time,Timezone</i> obvious meaning</li>
- <li><i>GMST,ÖMST</i> = Greenwich and Local Mean Sidereal Time (in HH:MM)</li>
- </ul>
- <p>
- An SVG image of the current moon phase may be obtained under the link
- <code><ip address of fhem>/fhem/Astro_moonwidget?name='<device name>'&size='<width>x<height>'</code>
- <p>
- Notes: <ul>
- <li>Calculations are only valid between the years 1900 and 2100</li>
- <li>Attention: Timezone is taken from the local Perl settings, NOT automatically defined for a location</li>
- <li>This module uses the global attribute <code>language</code> to determine its output data<br/>
- (default: EN=english). For German output set <code>attr global language DE</code>.</li>
- <li>The time zone is determined automatically from the local settings of the <br/>
- operating system. If geocordinates from a different time zone are used, the results are<br/>
- not corrected automatically.
- <li>Some definitions determining the observer position are used<br/>
- from the global device, i.e.<br/>
- <code>attr global longitude <value></code><br/>
- <code>attr global latitude <value></code><br/>
- <code>attr global altitude <value></code> (in m above sea level)<br/>
- These definitions are only used when there are no corresponding local attribute settings.
- </li>
- <li>
- It is not necessary to define an Astro device to use the data provided by this module<br/>
- To use its data in any other module, you just need to put <code>require "95_Astro.pm";</code> <br/>
- at the start of your own code, and then may call, for example, the function<br/>
- <code>Astro_Get( SOME_HASH_REFERENCE,"dummy","text", "SunRise","2019-12-24");</code><br/>
- to acquire the sunrise on Christmas Eve 2019</li>
- </ul>
- <a name="Astroget"></a>
- <h4>Get</h4>
- Attention: Get-calls are NOT written into the readings of the device ! Readings change only through periodic updates !<br/>
- </li>
- <ul>
- <li><a name="astro_json"></a>
- <code>get <name> json [<reading>]</code><br/>
- <code>get <name> json [<reading>] YYYY-MM-DD</code><br/>
- <code>get <name> json [<reading>] YYYY-MM-DD HH:MM:[SS]</code>
- <br />returns the complete set or an individual reading of astronomical data either for the current time, or for a day and time given in the argument.</li>
- <li><a name="astro_text"></a>
- <code>get <name> text [<reading>]</code><br/>
- <code>get <name> text [<reading>] YYYY-MM-DD</code><br/>
- <code>get <name> text [<reading>] YYYY-MM-DD HH:MM:[SS]</code>
- <br />returns the complete set or an individual reading of astronomical data either for the current time, or for a day and time given in the argument.</li>
- <li><a name="astro_version"></a>
- <code>get <name> version</code>
- <br />Display the version of the module</li>
- </ul>
- <a name="Astroattr"></a>
- <h4>Attributes</h4>
- <ul>
- <li><a name="astro_interval">
- <code><interval></code>
- <br />Update interval in seconds. The default is 3600 seconds, a value of 0 disables the automatic update. </li>
- <li>Some definitions determining the observer position:<br/>
- <code>attr <name> longitude <value></code><br/>
- <code>attr <name> latitude <value></code><br/>
- <code>attr <name> altitude <value></code> (in m above sea level)<br/>
- <code>attr <name> horizon <value></code> custom horizon angle in degrees, default 0<br/>
- These definitions take precedence over global attribute settings.
- </li>
- <li>Standard attributes <a href="#alias">alias</a>, <a href="#comment">comment</a>, <a
- href="#event-on-update-reading">event-on-update-reading</a>, <a
- href="#event-on-change-reading">event-on-change-reading</a>, <a href="#room"
- >room</a>, <a href="#eventMap">eventMap</a>, <a href="#loglevel">loglevel</a>,
- <a href="#webCmd">webCmd</a></li>
- </ul>
- </ul>
- =end html
- =begin html_DE
- <a name="Astro"></a>
- <h3>Astro</h3>
- <ul>
- Absichtlich keine deutsche Dokumentation vorhanden, die englische Version gibt es hier: <a href="/fhem/docs/commandref.html#Astro">Astro</a>
- </ul>
- =end html_DE
- =cut
|