#include #include #include #define GROUP_COMMAND_ARG(status, groupId) ( groupId + (status == OFF ? 5 : 0) ) void RgbCctPacketFormatter::initializePacket(uint8_t* packet) { size_t packetPtr = 0; // Always encode with 0x00 key. No utility in varying it. packet[packetPtr++] = 0x00; packet[packetPtr++] = 0x20; packet[packetPtr++] = deviceId >> 8; packet[packetPtr++] = deviceId & 0xFF; packet[packetPtr++] = 0; packet[packetPtr++] = 0; packet[packetPtr++] = sequenceNum++; packet[packetPtr++] = groupId; packet[packetPtr++] = 0; } void RgbCctPacketFormatter::unpair() { for (size_t i = 0; i < 5; i++) { updateStatus(ON, 0); } } void RgbCctPacketFormatter::command(uint8_t command, uint8_t arg) { pushPacket(); if (held) { command |= 0x80; } currentPacket[RGB_CCT_COMMAND_INDEX] = command; currentPacket[RGB_CCT_ARGUMENT_INDEX] = arg; } void RgbCctPacketFormatter::updateStatus(MiLightStatus status, uint8_t groupId) { command(RGB_CCT_ON, GROUP_COMMAND_ARG(status, groupId)); } void RgbCctPacketFormatter::modeSpeedDown() { command(RGB_CCT_ON, RGB_CCT_MODE_SPEED_DOWN); } void RgbCctPacketFormatter::modeSpeedUp() { command(RGB_CCT_ON, RGB_CCT_MODE_SPEED_UP); } void RgbCctPacketFormatter::updateMode(uint8_t mode) { lastMode = mode; command(RGB_CCT_MODE, mode); } void RgbCctPacketFormatter::nextMode() { updateMode((lastMode+1)%RGB_CCT_NUM_MODES); } void RgbCctPacketFormatter::previousMode() { updateMode((lastMode-1)%RGB_CCT_NUM_MODES); } void RgbCctPacketFormatter::updateBrightness(uint8_t brightness) { command(RGB_CCT_BRIGHTNESS, RGB_CCT_BRIGHTNESS_OFFSET + brightness); } void RgbCctPacketFormatter::updateHue(uint16_t value) { uint8_t remapped = Units::rescale(value, 255, 360); updateColorRaw(remapped); } void RgbCctPacketFormatter::updateColorRaw(uint8_t value) { command(RGB_CCT_COLOR, RGB_CCT_COLOR_OFFSET + value); } void RgbCctPacketFormatter::updateTemperature(uint8_t value) { command(RGB_CCT_KELVIN, RGB_CCT_KELVIN_OFFSET - (value*2)); } void RgbCctPacketFormatter::updateSaturation(uint8_t value) { uint8_t remapped = value + RGB_CCT_SATURATION_OFFSET; command(RGB_CCT_SATURATION, remapped); } void RgbCctPacketFormatter::updateColorWhite() { updateTemperature(0); } void RgbCctPacketFormatter::enableNightMode() { uint8_t arg = GROUP_COMMAND_ARG(OFF, groupId); command(RGB_CCT_ON | 0x80, arg); } void RgbCctPacketFormatter::finalizePacket(uint8_t* packet) { V2RFEncoding::encodeV2Packet(packet); } void RgbCctPacketFormatter::parsePacket(const uint8_t *packet, JsonObject& result) { uint8_t packetCopy[RGB_CCT_PACKET_LEN]; memcpy(packetCopy, packet, RGB_CCT_PACKET_LEN); V2RFEncoding::decodeV2Packet(packetCopy); result["device_id"] = (packetCopy[2] << 8) | packetCopy[3]; result["group_id"] = packetCopy[7]; result["device_type"] = "rgb_cct"; uint8_t command = (packetCopy[RGB_CCT_COMMAND_INDEX] & 0x7F); uint8_t arg = packetCopy[RGB_CCT_ARGUMENT_INDEX]; if (command == RGB_CCT_ON) { if (arg == RGB_CCT_MODE_SPEED_DOWN) { result["command"] = "mode_speed_down"; } else if (arg == RGB_CCT_MODE_SPEED_UP) { result["command"] = "mode_speed_up"; } else if (arg < 5) { // Group is not reliably encoded in group byte. Extract from arg byte result["state"] = "ON"; result["group_id"] = arg; } else { result["state"] = "OFF"; result["group_id"] = arg-5; } } else if (command == RGB_CCT_COLOR) { uint8_t rescaledColor = (arg - RGB_CCT_COLOR_OFFSET) % 0x100; uint16_t hue = Units::rescale(rescaledColor, 360, 255.0); result["hue"] = hue; } else if (command == RGB_CCT_KELVIN) { uint8_t temperature = static_cast( // Range in packets is 180 - 220 or something like that. Shift to // 0..224. Then strip out values out of range [0..24), and (224..255] constrain( static_cast(arg + RGB_CCT_KELVIN_REMOTE_OFFSET), 24, 224 ) + // Shift 24 down to 0 RGB_CCT_KELVIN_REMOTE_START )/2; // values are in increments of 2 result["color_temp"] = Units::whiteValToMireds(temperature, 100); // brightness == saturation } else if (command == RGB_CCT_BRIGHTNESS && arg >= (RGB_CCT_BRIGHTNESS_OFFSET - 15)) { uint8_t level = constrain(arg - RGB_CCT_BRIGHTNESS_OFFSET, 0, 100); result["brightness"] = Units::rescale(level, 255, 100); } else if (command == RGB_CCT_SATURATION) { result["saturation"] = constrain(arg - RGB_CCT_SATURATION_OFFSET, 0, 100); } else if (command == RGB_CCT_MODE) { result["mode"] = arg; } else { result["button_id"] = command; result["argument"] = arg; } if (! result.containsKey("state")) { result["state"] = "ON"; } } void RgbCctPacketFormatter::format(uint8_t const* packet, char* buffer) { buffer += sprintf_P(buffer, PSTR("Raw packet: ")); for (int i = 0; i < packetLength; i++) { buffer += sprintf_P(buffer, PSTR("%02X "), packet[i]); } uint8_t decodedPacket[packetLength]; memcpy(decodedPacket, packet, packetLength); V2RFEncoding::decodeV2Packet(decodedPacket); buffer += sprintf_P(buffer, PSTR("\n\nDecoded:\n")); buffer += sprintf_P(buffer, PSTR("Key : %02X\n"), decodedPacket[0]); buffer += sprintf_P(buffer, PSTR("b1 : %02X\n"), decodedPacket[1]); buffer += sprintf_P(buffer, PSTR("ID : %02X%02X\n"), decodedPacket[2], decodedPacket[3]); buffer += sprintf_P(buffer, PSTR("Command : %02X\n"), decodedPacket[4]); buffer += sprintf_P(buffer, PSTR("Argument : %02X\n"), decodedPacket[5]); buffer += sprintf_P(buffer, PSTR("Sequence : %02X\n"), decodedPacket[6]); buffer += sprintf_P(buffer, PSTR("Group : %02X\n"), decodedPacket[7]); buffer += sprintf_P(buffer, PSTR("Checksum : %02X"), decodedPacket[8]); }